Computational Bone Mechanics

E. Rank

1 Technische Universität München
2 Technische Universität Hamburg Harburg
3 Univ. of Isfahan
4 Univ. of Minnesota
5 Delft Technical University

This work has partially been supported from the International Graduate School of Science and Engineering within the Excellence Initiative by the German Government, Humboldt Foundation, the German Science Foundation (DFG) and SIEMENS AG.
Computational Engineering
Multiscale problems in Computational Engineering
A multiscale problem in bone mechanics
Internal structure of a human femur

- lightweight composite “structure”
- adaptive load bearing capacity
- heterogeneous on all scales

Trabecular bone
“soft”
porous
orthotropic

Cortical bone
“hard”
dense
transversal isotropic

Illustration of a cross-section of the femur - abdn.ac.uk
Predicting the mechanical behavior of human femurs

Background
Orthopedic surgeons lack quantitative information on the mechanical behavior of bones (strains, deformations, stresses, etc.)

Accurate predictions of the mechanical behavior would allow to
- optimize implants and fixation devices
- estimate the strength of bones with defects
- virtually plan surgeries

Research goal
A simulation tool that predicts the mechanical response of a patient’s bone under physiological loading scenarios

→ clinical practice requires a fast, *interactive* and *validated simulation* tool
CT scans

CT data (Hounsfield Unit)

Aim: predict mechanical behaviour based on patient specific data
Voxel-based Finite Element method (e.g. Keyak et al. 1990)

CT scan

Density

Material assignment

Finite Element analysis

Advantage: Can largely be automated

Drawback: (Very) low accuracy
(High order) structure-based method

(e.g. Marom 1990, Müller-Karger et al. 2001 …, Yosibash et al. 2007)

Advantage:
Accurate

Drawback:
Time consuming model definition
State of the art in computational biomechanics

High-order finite element analysis validated by experimental observations
(Prof. Zohar Yosibash et al. – Ben Gurion University, Israel)

In vitro experiment

![Image of in vitro experiment](image1.png)

approximated by

Simulation

![Image of simulation](image2.png)

Measurements (EXP)

Agreement?

Predictions (FEA)

EXP = 1.003 FEA + 28.15

$R^2 = 0.978$
Our goal: Combine the best of two worlds

- fast and simple model definition like in voxel-FEM
- validated accuracy like in p-FEM
- ... and much, much shorter computational time

→ Finite Cell Method

- high order embedded domain method
- uses large 'super-voxels' (= 'cells') for 'ansatz-functions'
- represents (bone) material by precise, voxel-wise numerical integration
Time for definition of a numerical model reduced from *hours* to a few *seconds*
Verification and validation for the **Finite Cell Method**

- fresh frozen femur – 63 year old male
- load controlled pressure 1000 N
- model size 1024 x 1024 x 185 voxel – 40 x 40 x 10 voxel/cell
- 678 finite cells – 20³ sub-cells

M. Ruess, D. Tal, N. Trabelsi, Z. Yosibash, E. Rank
The finite cell method for bone simulations: Verification and validation
FCM – p = 4 – 40 x 40 x 10 voxel/cell

p-FEM – p = 5 – tetrahedral mesh

- point data
 - $R^2 = 0.975$ (FCM)
 - $R^2 = 0.981$ (p-FEM)
Microscale simulation

- basis for bone remodelling (healing, bone ingrowth, ...)
 - basis for stability prognoses of osteoporotic bone

MICRO CT Model

- second lumbar vertebra
- 5% formalin embalmed human cadaver
- diameter: 6mm
- height: 14mm
- resolution: 26 µm isotropic
- scan time: 4.1 h
- top loaded 100 N/mm²
- bottom clamped

Unpublished: Martin Ruess TU Delft/TUM
1. Basis:
Structured grid of high-order finite cells

2. Accurate integration:
Adaptive sub-cells along geometric boundaries
... micro CT scanned specimen

Analysis Model

- data size: 15.2 m voxel
- finite cells: 408
- 32 x 32 x 29 voxel / cell

bottom clamped (weak bc)
top load 100 N/mm²

Unpublished: Martin Ruess TU Delft/TUM
... micro CT scanned specimen

p-degree = 6 -- # dof 52761

von Mises stress distribution

Unpublished: Martin Ruess TU Delft/TUM
Interactive numerical simulation
Joint project with:
R. Westermann (TUM-IN)
R. Burgkart (TUM Klinikum rechts der Isar)
A. Düster (TUHH)
J. Parvizian (Univ. Isfahan)
Z. Yosibash (Univ. Beer Sheva)

Scientific staff:
Ch. Dick, M. Ruess, Z. Yang

Funding: IGSSE, TUM-IAS,
Humboldt-Foundation, SIEMENS
Thank you for your attention!